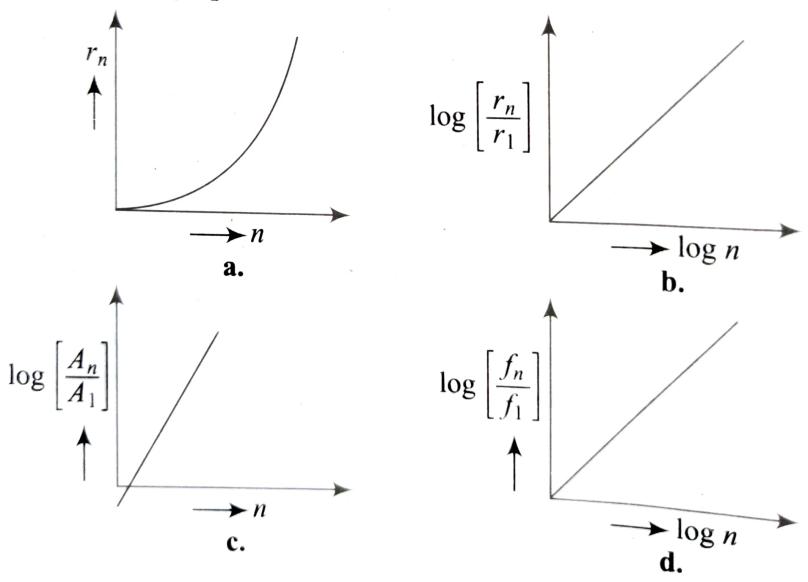
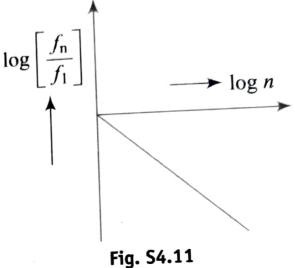
2. If, in a hydrogen atom, radius of *n*th Bohr orbit is r_n , frequency of revolution of electron in *n*th orbit is f_n , and area enclosed by the *n*th orbit is A_n , then which of the following graphs are correct?



a., b., c. Since in hydrogen atom $r_n \propto n^2$, therefore graphics r_n and n will be a parabola through origin and having increasing slope. Therefore, option (a) is correct. Since, $r_n \propto n^2$, therefore $r_n/r_1 = n^2$

Hence, $\log (r_n/r_1) = 2 \log n$

It means, graph between $\log (r_n/r_1)$ and $\log n$ will be a straight line passing through origin and having positive slope (tan $\theta = 2$). Therefore, option (b) is also correct. If radius of an orbit is equal to r, then area enclosed by it will be equal to $A = \pi r^2$.



Since $r_n \propto n^2$, therefore $A_n \propto n^4$.

Hence,
$$\frac{A_n}{A_1} = n^4 \operatorname{or} \log\left(\frac{A_n}{A_1}\right) = 4 \log n$$

It means, graph between log (A_n/A_1) and log *n* will be a straight line passing through origin and having positive slope (tan $\theta = 4$). Therefore, option (c) is also correct.

If frequency of revolution of electron is f, then its angular velocity will be equal to $\omega = 2\pi f$. Hence, its angular momentum will be equal to $I\omega = mr^2\omega$. But according to Bohr's theory, it is equal to $nh/2\pi$, therefore,

$$mr^2 (2\pi f) = \frac{nh}{2\pi}$$
 or $f = \frac{nh}{4\pi^2 mr^2}$
Since $r \propto n^2$, therefore $f \propto \frac{1}{n^3}$

Hence,
$$\frac{f_n}{f_1} = \frac{1}{n^3}$$
 or $\log\left(\frac{f_n}{f_1}\right) = 3\log n$

It means, graph between $\log (f_n/f_1)$ and $\log n$ will be a straight line passing through origin and having negative slope, tan $\theta = -3$. Hence, it will be as shown in figure. Hence, the option (d) is wrong.